Simplifying
Database Design

Josh Berkus
PostgreSQL Experts, Inc. PGx
O'Reilly OSCON 2009 = exreris.ine

How Not To Do It
four popular methods

1. One Big Spreadsheet

City State Zip Car? 7?7 Tux? Mon. Tues.Wed. Thurs Fri

San Francisco CA Q4117 ar Yes
San Francisco CA 94131 Car Yes MNo

Los Angeles CA 90026 No Car Yes Yes y y y y y
Oakland CA 94613 No Car Yes y y y y y
San Francisco CA 94118 Car Yes y y y y y
Emeryville CA 94608 Car Yes Yes y y y y y
Foster City CA 94404

Menlo Park CA 94025 Car Yes y y y y y
Berkeley CA 94703 Car Yes y y y y y
Oakland CA 94609 Car Yes No X X X y
San Francisco CA 94115 No Car Yes No y
San Francisco CA 94103 Car Yes Yes y y y y y
El Sobrante CA 94803 Car Yes Yes y y y y y
So San Francisco CA 94080 car Yes YES n evng n evng evng
Oakland CA 94608 Car No y y y y
San Jose CA 95123 Car Yes No Till3 n T3y
Petaluma CA 94954 Car

San Bruno CA 94066 Car Yes No

San Francisco CA 94117 y y y y y
Burlingame CA 94010 Car Yes No y y y y
San Francisco CA 94116 Car Yes

San Francisco CA 94118 Car Yes y y

San Francisco CA 94123 No Car Yes No y y y y
Pacifica CA 94044-*Car Yes No

San Francisco CA 94115 Car Yesse No y y y y
San Francisco CA 94121 Car Yes No Befored y y Before 4 Before 4

2. Hashes, EAV & E-Blob

Height 73in

Married? FALSE

<hair="brown"><age="49">
<married="0"><smoker="0">

3. Incremental Development

4. Leave It to the ORM

at news at_admins
PK_[news id PK | login at_glossary
Pk [word i
course_id password
FK1 | member_id real_name 1 |course
Iy date email word
1 formatting language definition
title i .
oL members body fastlogh et | ted.word_id
PK [member ig FK1 |pollid FK1 [forum.id FK1 | related_content id
at_faq_topics.
at tests_questions_categories f
ut |login PK | topic_ig
PK | category i password 9 t
email 1 |course_id
1 |course_id website name
title first_name K1 |term —
#i1 | login PSS fasname FK1 [page I
L
™ gender at_language_pages LT
address | PK |tem | PK_[course id
status. postal PK |pags
privilege city > P member_i
admin_privilege province Pt |or_name - cat i
N FK1 | category_id count S login content_packaging Iy
at instructor_approvals phone access
e * time created_date a_related_content
PK | member_id operation titlo PK [content i
L table description PK | related content id
request_date | num_affected n
notes details
inbox_noti max_quota
FK1 [test id i | mbox natify at_forums_threads 1 | b 10 oy FK1 |login
FK1 | question_id oK oot i hide
AT proferences
parent_id header
membe
forum_id at faq_entries
ogin
last_comment PK_[entn
at_course_stats T comments primary_language
PK |course id at_config subject rss
stmessages PK | login_date o o y [feon
PK_ [message i name date T Prem ot
message id s [e at_tests_questions o
members » sticky PK [question_ia
FK1 | member_id o :’;‘::‘ﬂ—a‘fe FK1 | question_id FK1 b PK | forum_id
= category_id o
description
type
feedback ::mf::"‘s
Guostion last_post
FK1 [news_id
at_handbook_notes
at tests
PK [note ig '
at_users_online PK_[testia
PK L testid
at_forums_courses
" .l PK |forum_id course_id
login PHM |eourse id at_polls_members
expiry note —
FK1 | group_id Pt | moblefeld FK1 [note ia e W
or i
h memt
Sl P [foed_id
P | Linki FK1 | content id
result_rolease
catip random
i o difficulty
LinkName ;::::mes num_takes
Description anonymous.
Roproved at_master.list e |comtent e i
SubmitName at_backups K [pu field
‘SubmitEmail A
SubmitDate PK | backup_id ‘,,“,. field | at_feeds
hits X
FK1 | LinkiD 1 |course_id PK|feed id
A date
1
description un
file_size FK1 | resultid
at_tests_groups.
PK1 |test id
PK |group id
) FK1 | forum_id
5 FK1 | member_id
at_course_enroliment 1 |course_id
contont_parent_id
al_course_cals PK
sl resource_calegories o ordoring
PK [cat i fast_modifie at tests results
PK | catip catid revision Lisste
cat_name formatting PK [result ia
" |cours cat_parent - release_
CatName at_forums_subscriptions Keywords 1o testia
CatParent momber_id
e | FK1 [language_code FK1 PK |forum id Taaenpan date_taken
FK1 | char_set at_forums_accessed PK ber_id xt final_score
B horit_release_dat FK1 |language_code
t i [post 10 i [mossage. i) L 1 [vanabi
PK | member_id FK1 | torm
last_accessed
subscribe
al languages
al tests_ansWers
at themes PK |language code y
PK | char set PK
PK it carse PK
e at_member_track
= ! t_language_text
at_groups, PK atl X
version direction = ooy o) at_tests_questions_assoc
dir_name reg_oxp PK Joroup id PK [language code
e e native_name answer PK lgwng PR st id T | nu
last_updates english. name score PK | question i PK |term
e " Jcouen \ 2
status FK1 | word_id title FK1 |backup_id [weight ot
ordering revised_date
ext required context
i ry_id FK1 | topic._id
FK1 | group_id FK1_ontry 4 o

Data Modellng

Entity Resource Diagram

i (hgect

H=)
uamne [ARL
deseeipiion (00

aine_idid (FR}

bazeDomain orpedDansain
Fomuain 30 (TR [Bomeain id (FE) |
AT e {0 [zaper Type _d.domam_id TPE])

i

: T : teatalet
iz Tic in o]
. 518
coznecticafalabouship
oot entity_td (FR) (AR, elsitar
f"?;m“ ERETIR P sd.iT\,. [FEA] , rigwEnbndmibute
r:l'uld idenciny_id (FE) (AECL) |:|.l.1..bu.. & Wimroer, ._.'hlra 1 dernain d fF'K;I -'IEI!IHI'!‘:H
e, ,_::I. (ERIAED S discrinsinan (ATFED =
Bt T AR .ﬁ_.:Emn ~:L.z~|u~,- HOER i - -
mh'ﬂﬁ g dh ke o AKL]
c oy . rari 0 (FED]
ehildFEi2h (0) i see 320 T
pamastE oo {0
pazexiBigh (07
si-wandarery (0
A
Fanatis 'd. T
15 used as
connettionFomigmlerAn e

azest_id (FED)
view_ic (FX)

10l athibate_zd (F
4! .er:l::w_.d (FE)

commcbozo (T

+extensionData

Unified Modeling Language

0.+ +atirib
Property
1 0.* = 0.*
namef1..1]
Hvaluel0._1] N
TranscodingParams textensionData | 1
raudiold 1] 0.7 0.
+ir!'lage-[IJ 1 +oodecPargms +contentTypeParams Media X . ions _
::‘ldag[ol‘-ﬂ roontentType[0.1] T
ex[0..1] L contentTypeParams(0..*] 1 0.0 [rype[1.1]
+n?ulll|_)a[t[0..1] [rsizeLimit[0..1] Hattributes[0..*]
+5|zeL|r|_'|rt[0..1] 1 ransformations(0..] [+orderf0..1]
+extensionData[..*] jonData[0.."]
? P
101 (111
. El 0.1 +multipart
[xOR} -
! Audio 0.1 1 Multipart
: [rcodec]D. 1] o0 1]
: +codecParams(0..*] " e N
<audio |vhitRate[0.1] Faudio +?Udm[2;'11]]
: “trsamplingRate(0..1] magell..
0.1 psamplingResolutionfo..1] :réiﬁgmﬁﬂ !
+channels[0..1] =
H+zyntheticf0..1] 1 0.1
: +synthetic ;

Synthetic 1 1 1 _
+channel Tallse(D. 1] 0.1 | +presentation
+channelsPriority[0..1]

XOR} +instrument[0..1] Presentation
scontentType[0.1]
[+contentTypeParams(0..*]
Htemplate[0..1]
Image 0.1 HHayout(0..1]
oodec0..1]
HcodecParams(0..%] i
timage +eolorScheme(D..1] image y
dth0. 1]
0.1 7 |+heightfo..1] 1 1
HresizeDirective[0..1] 0.1 +colorScheme
+upsizedllowed [0,.1] '1 W
ColorScheme
: rr— 0.* | +contentTypeParams
XOR} *depm[‘l.[.l] ! +eodecPapams.
: Property
0. namel1-1]
I oA value[D.. 1]
+Haxl Text
+ext
; 0.1 +oodecParams | 0.
XOR} - +eodecPdrams | 0.7
: i
id 0.1
‘ideo Frvideovisual[o. 1]
01 rrvideoAudiol0.1] +videa
VideoVisual
VideoAudio K codec(D. 1]
+codecParams[0..%]
+codec(d.. 1] . +sizeLimit[D..1]
+codecParams(0..%] . . +bitRate[0..1]
+irfranafomiation 1 [+sizelimit]0..1] 0.1 +videoisual +frameRatel0
e o *biRaE(. 1] - +erru?[oaﬁ[T e
*91“"’”‘93'}? - +samplingRate[0..1] ™ +videoAudio 01 L eightio. 1]
larder{o. 1Y +samplingResolution[0..1] [resizeDirective(0.1] 1
+channels(0..1] 1 [+ unsizeAllowed [0"1]
+transformations[0..*] 1 +1lpasnslurrrla1jons[0....'|
+ransformations | 0.7

which standard?

Wait

PostgreSQL Job Board

QSun

erosystems el

—> PostgresQL Software Engineer <— —> Databases Software Test Engineer <

ST e e e

e e
e e e
EEREIEEEE
T

Simple Bulletin Board
Database Design

Database As Model

1. Your database is a model of your application

2. Your application is a model of your problem
domain

conclusion: you can simply model the database as
a derivative of your problem domain

corollary: if you don't understand your database,
you don't understand the problem you're solving

Get Together
Your Whole Dev Team

Why the whole team?

* You need to know the entire problem you're
modeling through the database.

 Some developers may be working on specific
features which need database support which
the managers forget about.

* All developers need to understand that the
database is part of the software development
and release cycle.

Start with a List
“things” we need to store

 Forums
 Threads

* Posts

» Users
 Administrators
 Messages

Simple Relationships

Threads

Messages

Figure out the Attributes
of each "thing”

* Name

e emall

* login
e password

e status

Users

Figure out what kind of data

name
email
login
password
status

text
text — special
text
text

char
Users

Repeat for all “Things”

e forums * messages
- name, description, — sender, recipients,
owner, created subject, content
e threads

- name, description,
owner, created

e posts

— created, owner,
content, flag

OK, Now Get Out!

Interlude

All

the Relational Theory
You Need to Know
iIn 20 Minutes

E.F. Codd
Database Engineer, IBM 1970

IBM Databases Run Amok

1.losing data
2.duplicate data
3.wrong data
4.crappy performance

5.downtime for database redesign
whenever anyone made an
application change

Information Retrieval

A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external representation
are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Set (Bag) Theory

Relations

Relation
(table, view, rowset)

Relation
(table, view, rowset)

Attributes

Relation
(table, view, rowset)

Domains (types)

Relation
(table, view, rowset)

Keys

Relation
(table, view, rowset)

Tuple (row) Tuple (row) Tuple (row)

Constraints

Relation
(table, view, rowset)

Tuple (row)

Attribute

Tuple (row)

Attribute > 5

Foreign Key Constraint

Derived Relation (query)

Atomic Data

Non-Atomic Attributes

 name (text)

* email (text)

* login (text)

e password (text)

» status (char)
Users

Atomic, Shmomic. Who Cares?

 Atomic Values:

- make joins easier

- make constraints easier
 Non-atomic Values:

- increase CPU usage
- make you more likely to forget something

What's Atomic?

The simplest form of a datum, which is not
divisible without loss of information.

name
Josh Berkus

SELECT SUBSTR(name,STRPOS(name, ")) ...

Status
a

... WHERE status = 'a' or status ='u’ ...

What's Atomic?

The simplest form of a datum, which is not
divisible without loss of information.

first name last name
Josh Berkus
active access

TRUE a

Table Atomized!

first_name (text)
last_name (text)
email (text)
login (text)

password (text)
active (boolean) Users
access (char)

Where Are My Keys?

first_name (text)
last_name (text)
email (text)
login (text)

password (text)
active (boolean) Users
access (char)

Candidate (Natural) Keys

 first name (text)
* last _name (text)

* email (text)

» password (text)

 active (boolean)
e access (char)

Users

A Good Key

e Should have to be unique because the
application requires it to be.

 Expresses a unique predicate which describes
the tuple (row):

- user with login “jberkus”

— post from “jberkus” on “2009-05-02 13:41:22" in
thread “"Making your own wine”

* |f you can't find a good key, your table design is
missing data.

Surrogate Key

 first name (text)
* last _name (text)

* email (text)

» password (text)

 active (boolean)
e access (char)

» user (serial)

Users

When shouldn't |
use surrogate keys?

As a substitute for real keys
- not ever

If the real key works for the application
- it's a single column
- it's small

For Join Tables (more later)

If they are not going to be used

- |eaf tables

When should |
use surrogate keys?

* |f the real key is complex or really large
- 4 columns
- large text field
- time range
* |f your application framework requires them
- but probably better to get a better framework
* |f you're doing data warehousing
- where the bytes count

But wait, aren't ID fields “faster”?

No.

While INTs are smaller,
joins are expensive.

Test twice, design once.

users: no surrogate key

create table users (
first _name text not null check
(length(first_nane) between 1 and 40),
| ast _nanme text not null check
(length(last_nane) between 2 and 30),
| ogi n text not null unique check
(length(l ogin) between 4 and 30),
password text not null check
(length(login) between 6 and 30),
emai | emai | not null uni que,
description text,
| con t ext,
| evel I nteger not null default 1
ref erences access |levels (level)
on update cascade on delete set default,
active bool ean not null default TRUE

posts: surrogate keys

create table posts (

post SERI AL not null uni que,
thread i1nteger not null references threads(thread)
on del ete cascade on update cascade,
created timestanp with tine zone
not null default current timestanp,

owner text not null

references users (login) on update cascade

on del ete cascade,
cont ent text not null,
flag char (1) references flags(fl ag)

on update cascade on del ete set null
constraint posts _key unique (thread, created, owner)

Constraints
for clean data

* Are there to prevent “bad data”.

- allow you to rely on specific assertions being
true

- prevent garbage rows

— deter application errors
« and stupid display problems

Is VARCHAR(#) a Constraint?

* No, not really

- if you need an upper limit, you probably need a
lower limit

e but ... data types are primitive constraints

— just not constraining enough to prevent bad
iInput

Defaults
for convenience

* Allow you to forget about some columns
- help support “NOT NULL" constraints

* Let you set values for “invisible” columns
- like auditing information

» Let you set things "automatically”

- like created on current_timestamp

But my Application Code
Takes Care of Data Format!

 Maybe

- you probably don't want to make column
constraints too restrictive

- allow some room for cosmetic changes
e and non-essential data

 Maybe Not

— applications have bugs
- everything has a RESTful interface now
- NULLSs can behave very oddly in queries

No Constraints

first_ name| last_name email login password |active | level
Josh Berkus josh@pgexperts.com jberkus jehosaphat TRUE a
NULL NULL kelley@ucb K NULL FALSE u
Mike Hunt www.pornking.com c34521 c34521 TRUE I
S F gavin@sf.gov gavin twitter NULL X

Constraints and Defaults

first_ name text

- not null check (length between 1 and 40)
last _name text

- not null check (length between 2 and 40)
email text not null 2?77

login text

- not null unique check (length between 4 and 40)
password text

— not null unique check (length between 6 and 30)

Constraints and Defaults

e active boolean

- not null default TRUE
» access char(1)

- not null check in('a','u’) default 'u’
e user id serial

- not null unique

Gee, that was easy!
IS that all there IS?

Well, no. It gets more complicated.
See you after the break.

We All Just Want to Be Normal

Abby Normal
| legin [level [last_name

selena Deckelman

selena Dinner? 09:37

Abby Normal
| legin [level [last_name

selena Deckelman

selena Dinner? 09:37

~ Jerus Dinner? 0944 a

How can | be “Normal”?

1. Each piece of data only appears in one relation

- except as a “foreign key” attribute
* No “repeated” attributes

selena Deckelman
joerkus Dinner? 09:28
selena Dinner? 09:37

joerkus Dinner? 09:44

But What's Really "Non-Repeated™?

selena read,post,search,edit,delete,ban

mike u read,post,search

obviously repeated

But What's Really "Non-Repeated™?
- login level

selena

mike

l-------

non-repeated

But What's Really "Non-Repeated™?
- login level

selena

administrator

mike u

non-repeated

post

r read

a ban

How do you decide between
one/several tables?

« Simple Rule: “one thought, one table”
- like “one thought, one paragraph”
* You probably need more tables If:

- there's no unique key
- there's more than one unigue key

 You may need less tables if:

- you're doing lots of one-to-one joins

How do you decide between
one/several tables?

* Otherwise, it's based on the Application
 how does the application use the data?

- does it want an array?
- use a flat series of columns
» does it want a single fact or check?

— do you expect to add new types a lot?
— use a vertical child table

But wait, doesn't Normalization
have something to do with ID fields
and everything in a lookup table?

No.

Special Case #1:
many-to-many relationships

access levels privileges

administrator search
-— post
access_level privileges delete

Clevel priiege ban
S e

read
a search

Join Tables

* Contain only the keys of two or more other
tables

» Should have a single unique index across all
keys

« Should have Foreign Keys to all the other
tables with CASCADE

Special Case #2:

Lookup Tables
for constraints
privileges
~ privilege
access_level privileges read
~level priviiege search
-_ post
read delete
-_ ban

a search

Special Case #2:

Lookup Tables

dimension tables
first_name last_name city -_-
__- San

David Fetter Francisco

——- 5 Oskend CA

Miho Ishakura 17 Portland OR

——- 22 Washington DG

Robert Treat 91 Philadelphia PA

When do | use Dimension Tables?

 When there's multiple facts/levels to the
dimension

- locations

- demography
* WWhen you need to save space

- really, really big tables (millions of rows)
* Do not use them “just because”.

— dimension tables are not normalization

Special Case #3:
Tree Structures

* Developers want posts to “nest”
- posts should form a tree, one under the other

» “Palio Restaurant” July 19"

- “Re: Palio Restaurant”™ July 21st

» “Re: Re: Palio Restaurant” July 23rd
* “Re: Re: Palio Restaurant® July 24th
- “Re: Palio Restaurant” July 23rd

Tree Structures:
Proximity Tree

 Each item has a link to its parent item
- post 34 | parent_post 21
 Advantages

- most common
- fast to update

* Disadvantages

- slow to query

- requires WITH RECURSIVE or
CONNECT _BY/()

Tree Structures:
Path Fields

 Each item has a full "path” of its parentage
- post 34 | path 7,21,26
 Advantages

- fast to sort
- fast to query & search

* Disadvantages

- slow to update

- requires non-standard SQL extensions
e or text parsing

posts Table

create table posts (

post SERI AL not null uni que,
thread i1nteger not null references threads(thread)
on del ete cascade on update cascade,

parent post | nt eger references posts(post)
on del ete cascade on update cascade,
created timestanp with tine zone

not null default current timestanp,
owner text not null references users (Il ogin)
on update cascade on del ete cascade,
cont ent text not null,
flag char (1) references flags(fl ag)
on update cascade on del ete set null
constraint posts _key unique (thread, created, owner)

Special Case #4:
Extensible Data

* Developers want admins to be able to create
“flexible profiles”

- series of items
— undefined at installation time

e Josh Berkus

- male
- bearded
- wears glasses

Extensible Data:
Entity-Attribute-Value

Height 73in

408 Married? FALSE Height number

Age number

408 Age 37

Smoker boolean

EAVI

e Space-consumptive
- many many rows, lots of row overhead
» Enforcing constraints by procedural code
- very CPU-intensive
e Can't make anything “required”
» Can't index effectively
 Many-Way Joins
- selecting combinations performs horribly
 however, you can cascade-drop

EAVII

 All unmarried men with red hair under 30

SELECT first _nane, |ast_nane
FROM users
JO N user _profiles married USING (I ogin)
JO N user_profiles nmen USING (I ogin)
JO N user _profiles hair USING (Il ogin
JO N user _profiles age USI NG (| ogi n)
WHERE narri ed. property = Nhrrled7
and marri ed. value : BOOLEAN = FALSE

AND nen. property = "Gender' and nen.val ue = ' m
AND hair.property = 'Hair' and hair.value = 'Red
AND age. property = 'Age' and age.value::INT < 30

E-Blob

<hair="brown”><age="49">
<married="0"><smoker="0">

E-Blobby

e Slow to update, slow to search

- need to use application code or lots of parsing
* Requires special database extensions

- XML, hstore, etc.
 Advantages over EAV

- smaller storage space (with compression)
- no horrible joins

- combinations easier

- feeds directly into application code

How to Decide:
EAVIl vs. ThE-Blob

| N 1
Vix
* Will you be searching for specific items?
- EAVI

* Will you be just spitting out all data to the
application?

- E-Blob
* Do you have special DB extenstions?
- E-Blob

When Not to use EAV & E-Blob

* As the foundation for all of your data
- non-relational databases do this better

* For data which has important checks and
constraints

— or is required
 For data which needs to be searched fast
* As a way of modifying your application

— alter the database!

E-blob: The users Table

create table users (
first _nane text not null
check (length(first _nane) between 1 and 40),
| ast _nane text not null
check (length(last nane) between 2 and 30),

| ogi n text not null unique

check (length(login) between 4 and 30),
passwor d text not null

check (length(login) between 6 and 30),
emai | emai | not null uni que,
descri ption text,
| con t ext,
| evel | nteger not null default 1

references access |evels (level)

on update cascade on delete set default,
active bool ean not null default TRUE,
profile Xm

Making a DB Schema is a Process
not an end result

 Waterfall is Dead

- don't make the schema static and the
application dynamic

- if you use Aglie/TDD/etc. for app, use it for DB
- Plan to Iterate

Software Development Cycle (TDD)

create

write tests
specification N
develop
software

deploy
new version

get user
feedback

Database Development Cycle (TDD)

a write tests
ts N

develop
get new
developer schema
feedback &

deploy
new schema

write data
requiremen

But wait, how do | manage change
without breaking the application?

 The same as for software development
1)Testing
2)Migrations
3)Backwards-compatible APls

Testing

» Unit tests for database objects
— especially stored procedures
» Application tests for application queries

- need to be able to run all application queries
and test for breakage

* Performance Regression tests

- make sure you're not breaking performance

Migrations

* For each schema change, write a SQL
migration

— use transactional DDL (if available)
e Sequence these updates

- tie them to application updates
* Watch out for irreversability

- unlike application migrations, database
reversions may destroy data

Backwards-Compatible API

Views: Messages Table

* mMessSages are sent from one user to one user

create table nessages (
nessage SERI AL not null uni que,
sender text not null references users(login)
on del ete cascade on update cascade,
recipient text not null references users(login)
on del ete cascade on update cascade,
sent tinestanp wth tine zone
not null default current tinmestanp,
subj ect text not null
check (Il ength(subject) between 3 and 200),
content text not null
)
» developers want multiple recipients

- but, they don't want to refactor all code

1. Create message recipients

create table nmessage recipients (
nessage int not null references
nessages(nessage)
on del ete cascade on update cascade,
recipient text not null references users(l ogin)
on del ete cascade on update cascade,
constrai nt nessage_recipients_key
uni que (nessage, recipient)

2. Rename and modify messages

| NSERT | NTO nessage reci pients
SELECT nessage, recipient FROM nessages;

ALTER TABLE nessages
NAVE t o nessage contents;

ALTER TABLE nessage contents
DROP COLUMN r eci pi ent

3. Create VIEW for backwards
compatibility

CREATE VI EW nessages AS
SELECT nessage, sender,
array_agg(reci pient),
sent, subject, content
FROM nessage contents JO N
nessage _recipients
USI NG (nessage)
CROUP BY nessage, sender,
sent, subject, content;

Some Good Practices

“practice doesn't make perfect,
perfect practice makes perfect.”

Consistent, Clear Naming

* Pick a Style, and Stick To It

- plural tables or singular?

— camel case or underscore?

- have a “stylebook” for all developers
 Name objects what they are

- don't abbreviate
- don't use “cute” or “temporary” names

* If the object changes, change its name

Comment Your DB

« Use COMMENT ON ... IS

— describe each object

- if you have time, each column

- keep comments up to date

— Jjust like you would with application code

comment on table privileges is "a |list of application
pr|V|Ieges whi ch can be assigned to various privilege
| evel s.

Use Source Code Management

 DDL (data definition language) is Text

— check it into Git/SVN/Mercurial/Bazaar
— version it

Some Bad Practices

Premature Optimization

* Don't do anything “for performance” which
compromises the logical model of your data

- unless you've tested it thoroughly first
* Poor optimization limits your throughput
- but you can always buy more hardware
* Poor design can result in days of downtime

- besides, database engines are designed to
optimize for good design

“Downtime is more costly
than slow throughput”

Premature Optimization:
Five Warning Signs

1)Are you choosing data types according to
which is “faster”?

2)Do you find yourself counting bytes?

3)Did you disable foreign keys and constraints
because they were “too slow”?

4)Have you “denormalized” or “flattened” tables
to make them “faster™?

5)Do you find yourself trying to override the query
planner?

Polymorphic Fields

» Fields which mean different things depending
on the value of another field

4718

9001 application 1915

Magic Numbers

ID =0
2009-02-30
2000-01-01

-1, 1,2,3,4,5 100

Summary

1)The database is a simplified model of the
problem you're solving

2)It can be designed simply by working with the
development team on creating lists

3)Relational Theory is simple and has only a few
rules.

4)Normalization simply means removing
duplication

Summary

5)Designing a Table in 5 simple steps:
1)list your attributes
2)make them atomic
3)choose data types
)
)

4)choose keys
5)add constraints and defaults

Summary

6) For any given set of data, there are several
possible structures: pick the one the application

likes.
/) Dimension tables aren't for everyone.

8) Four Special Cases require Special SQL:
1) Many-to-Many Join Tables
2) Lookup tables and Dimension Tables
3) Tree Structured Data
4) Extensible Data

Summary

9) Managing Changes

1) Testing

2) Migrations

3) Views & Procedures as Compatible API
10) Follow Good Practices

11) Avoid Bad Practices

More Information

° mMme
- josh@pgexperts.com

- www.pgexperts.com
- it.toolbox.com/blogs/database-soup

* postgresq|
- www.postgresql.org
« at OSCON

- PostgreSQL booth
- State of Lightning Talks (Thursday 1:45)

‘ @ \ This presentation copyright 2009 Josh Berkus, licensed for distribution under the PGx

Creative Commons Attribution License, except for photos, most of which were POSTORESQL

stolen from other people's websites via images.google.com. Thanks, Google!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

